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2 SOFT-FLOOR AUCTIONS

Conventional auction theory advises sellers to set a binding hard reserve price that exceeds
their value of the auctioned item (Myerson 1981 and Riley and Samuelson 1981). If the seller
can credibly commit to not reselling the item or accepting bids beneath the reserve, she earns
more expected revenue from an auction. In practice, however, sellers often fail to commit to a
binding reserve price. Instead, they lower the opening price of unsold items or later re-auction
them (Burguet and Sakovics 1996). On the other hand, theory predicts that a non-binding
reserve price—also known as a soft floor—does not affect revenue. Nonetheless, many real-world
settings frequently feature a soft floor, as in eBay’s best-offer program or informal auctions such
as house sales (Huang et al. 2013). In such soft-floor auctions, sellers ask bidders to accept an
opening price to participate in an ascending auction and allow lower bids. If no bidder accepts
the opening price, the alternative bids are considered using first-price auction rules.

This paper shows that soft-floor auctions are more profitable and efficient than standard
auctions if bidders regret losing an auction at a favorable price. We introduce a standard
private-value auction framework in which bidders maximize a weighted average of their gain
less loser’s regret. While bidders could also experience winner’s regret, the winner would need
feedback about losing bids to compute forgone gain. This is not typically provided in practice.
On the other hand, when bidders lose, they learn the winning price, allowing the calculation of
forgone gain. We therefore focus on the more salient loser’s regret.1

When bidders anticipate experiencing regret upon seeing the auction results, they may change
their bidding strategy and, thus, the auction’s revenue. However, bidders never experience regret
in the truth-telling equilibrium of a second-price auction. When they bid their value, they would
not wish to change their bid regardless of the auction’s outcome. On the other hand, a bidder
may regret her bid in a first-price auction if she could have bid higher and won at a price beneath
her value for the object. The desire to avoid regret induces more aggressive bidding. Regret can,
therefore, explain the empirical observation of overbidding in first-price auctions. Proposition 2
formally proves that when bidders anticipate regret, a first-price auction revenue dominates a
second-price or ascending auction.2

While a revenue-maximizing seller prefers a first-price auction, bidders prefer a second-price
auction because they do not experience regret. soft-floor auctions exploit this fact by offering
bidders the opportunity to pay a premium to participate in a second-price auction instead of
a first-price auction. Proposition 6 shows that soft-floor auctions earn strictly more expected
1Such feedback would only reduce revenues (Isaac and Walker 1985, Dufwenberg and Gneezy 2002, Ockenfels and
Selten 2005). That said, our analysis in Appendix A.1 generalizes the model and shows how including winner’s
regret, if made salient, would change our predictions.
2Engelbrecht-Wiggans (1989) provided the first proof using a comparative statics result. Proposition 2 explicitly
quantifies how bidders change their behavior in first-price auctions.
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revenue than first-price auctions. Proposition 7 then shows that a soft-floor auction with a
hard reserve strictly outperforms a first-price auction with a hard reserve in terms of revenue
and efficiency.3 Intuitively, the optimal hard reserve in a first-price auction increases with the
support of values. However, adding a soft floor to the auction reduces the range of values at
which bidders submit first-price bids. Adding a soft floor accordingly lowers the optimal hard
reserve and, thus, the inefficiency of the hard reserve.

Our model also suggests that regret, not risk aversion, drives overbidding in first-price auctions.
Models with risk aversion and regret aversion predict that first-price auctions yield higher
revenues than second-price auctions. However, Proposition 8 demonstrates that when agents are
risk averse, soft-floor auctions yield lower revenues than first-price auctions.

We test our hypotheses in a controlled laboratory experiment. Soft-floor auctions can signifi-
cantly increase revenues compared to first-price auctions without the efficiency loss associated
with a hard reserve. This suggests that regret aversion, not risk aversion, drives overbidding.
Moreover, our experiments show that the soft floor is even more attractive than our model
of regret suggests. We confirmed our prediction that a larger weight on regret increases the
likelihood of accepting the opening bid. However, we also found that many bidders accept any
opening price so long as it does not exceed their value. When we added a soft floor in settings
with a hard reserve, the revenue and efficiency of the best soft-floor auction exceeded that of the
best first-price auction.

Our findings explain the widespread use of soft-floor auctions by emphasizing the role of bidder
regret in market design. Soft-floor auctions exploit bidders’ desire to avoid regret by allowing
them to pay a premium to participate in a second-price auction. However, our experimental
framework intentionally abstracts from several advantages of a soft floor over standard hard
reserve auctions. First, in practice, a seller who wants to use a hard reserve may find it
difficult to commit to not selling the item if the reserve is not met (Coase 1972, Caillaud and
Mezzetti 2004, Skreta 2015, Liu et al. 2019). A soft floor, on the other hand, does not require
such a commitment.4 Our laboratory experiments ensure that all hard reserves are credible
commitments, which would otherwise make soft floors comparatively more appealing. Second, a
hard reserve discourages participation (Bajari and Hortaçsu 2003). Indeed, some auction houses,
such as Ritchie Brothers, require no reserve to attract more bidders and provide certainty of sale.
We have exogenous participation across treatments, which removes the comparative advantage
3More precisely, if both auctions have optimally-chosen reserves, then a soft-floor auction outperforms a first-price
auction in terms of revenue, and if the first-price auction has a hard reserve exceeding 0, the soft-floor auction is
also more efficient.
4This holds both when soft floors are used instead of hard reserves or if soft floors are added to a hard reserve
since it allows for a lower hard reserve, thus making the hard reserve binding less often.
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of soft floors. Third, in real-world auctions, bidders often act on behalf of others and are driven
by a desire to avoid blame. Accepting a favorable opening price avoids the possibility of blame
since the final price will be higher than the bidder’s value for the item. Our experiments did not
include such agency problems. Our experiments likely underestimate the relative appeal of soft
floors.

Related Literature. Our study contributes to the literature on auctions. Engelbrecht-Wiggans
(1989) introduced bidder regret into an auction framework, showing that in a first-price auction,
loser’s regret increases bids while winner’s regret decreases bids. Many studies have since
confirmed the role of loser’s regret in explaining overbidding and high revenues in first-price
auctions when compared to English and second-price auctions (Ockenfels and Selten 2005, Filiz-
Ozbay and Ozbay 2007, Engelbrecht-Wiggans and Katok 2007; Engelbrecht-Wiggans and Katok
2008, 2009).5 Our research builds upon this empirical and theoretical work. We incorporate
regret as a linear and additively separable penalty to the utility function and use it to explain
the attractiveness of soft-floor auctions.

Moreover, we add to the literature on the role of risk aversion in auctions.6 Some studies have
suggested that risk aversion can explain overbidding in first-price auctions (Cox et al. 1988).
However, controlled laboratory evidence often contradicts this claim. Studies find no correlation
between risk preferences and overbidding (Isaac and James 2000, Berg et al. 2005). Additionally,
studies find no difference in overbidding when the risk involved is changed (Engelbrecht-Wiggans
and Katok 2009, Füllbrunn et al. 2019). This suggests that risk aversion does not explain
overbidding in practice. Our study contributes to this literature, as risk aversion would predict
lower auction revenues in a soft-floor auction, which is the opposite effect of what our model of
regret predicts and what we experimentally find.

Zeithammer (2019) was the first to analyze soft-floor auctions. He showed that, with symmetric
bidders, soft-floor auctions preserve revenue equivalence. Although bidders adjust their behavior
in response to the soft floor, the resulting equilibrium still features monotonic symmetric
bidding strategies. The Revenue Equivalence Theorem applies because the highest bidder wins
while bidders with minimal values receive zero expected utility. Zeithammer perturbs revenue
equivalence by extracting bidder surplus through the occasional participation of high-value
bidders. In contrast, we maintain symmetric bidders and introduce loser’s regret to perturb
revenue equivalence.

5See Kagel and Levin (2016) for a survey.
6See Vasserman and Watt (2021) for a survey.
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Lastly, our paper relates to the literature on optimal reserve prices. Early seminal work
suggested that hard reserve prices can be used to increase revenues both when values are inde-
pendent and interrelated if sellers commit not to resell (Myerson 1981, Riley and Samuelson 1981,
Engelbrecht-Wiggans 1987, Levin and Smith 1996). When such commitments are impractical,
Coase conjectured a price-setting monopolist would lose her monopoly power and set prices
close to marginal cost (Coase 1972). In sequential auctions with resetting of hard reserve prices,
many studies find that revenues above the efficient revenues are difficult to obtain (McAfee
and Vincent 1997, Liu et al. 2019, Liu et al. 2025). We contribute by showing that if bidders
anticipate experiencing regret, a soft-floor auction maximizes revenue while mitigating efficiency
loss and circumventing commitment problems.

The paper is structured as follows. Section 1 develops a model of salient regret. Section 2
analyzes the model and derives our main predictions. Section 3 considers risk aversion and
derives differences from the predictions of the regret model. Section 4 describes the experimental
design and our laboratory results. Section 5 discusses the results and concludes.

1. Model

Section 1 presents the model and shows how we incorporate regret into an auction setting.
We also explain why we focus our analysis on loser’s regret.

1.1. Set-Up. Consider a single seller with one unit of an indivisible good she values at v0 = 0.
There are n risk-neutral bidders indexed i ∈ {1, 2, · · · , n}. Bidders have private values vi drawn
independently and identically from the distribution F with full support on the interval [0, 1]. We
assume F is non-decreasing and differentiable on its support and has density function f . The
seller implements a soft-floor auction with hard reserve r and soft floor s with:

s ≥ r ≥ 0.

Bidders submit sealed bids exceeding r or decline to participate. The highest bid wins, and if
the winning bid exceeds s, the winner pays the maximum of the second highest bid and s, as
in a second-price auction. Otherwise, the winner pays her bid.7 Ties are broken by randomly
assigning the object to one of the highest bidders. We incorporate regret as a linear and additively
separable component of the utility function so that the utility of a bidder is the weighted average
of her gain less her regret. In particular, let β ∈ (0, 1) be the weight on the gain, and 1 − β be

7Observe that if s = 1, we recover a first-price auction, if s = r, we recover a second-price auction, and if r = 0,
we have a soft-floor auction without reserve.
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the weight on regret. Before we describe a soft-floor auction, it is useful to establish the effects
of regret on first and second-price auctions.

1.2. Regret in a First-Price Auction. Consider a first-price auction in which each agent i

bids bi. Denote the winning bid

(1) b1 := max
i

{bi}.

We similarly use b2 to denote the second highest bid and v1 and v2 to denote the highest and
second highest values, respectively. A bidder only experiences regret if she loses the auction at a
favorable price. Thus a bidder with value vi has regret ri:

ri

(
vi, bi, b1

)
=

 vi − b1 if bi < b1 < vi

0 else.

In other words, if agent i loses, she experiences regret if her value exceeds the price of the
winning bid. Otherwise, she does not experience regret.8 She has gain πi:

πi(vi, bi, b1) =

 vi − bi if bi = b1

0 else.

We can now write utility of agent i as a convex combination of gain and regret.

ui

(
vi, bi, b1

)
=

 β(vi − bi) if agent i wins
−(1 − β) max{vi − b1, 0} if agent i loses.

1.3. Regret in a Second-Price Auction. If bidders in the second-price auction are bidding
truthfully, then agent i has regret

ri

(
vi, v1, v2

)
=

 max{vi − v2, 0} if vi < v1

0 else.

If vi = v1 and bidder i wins, she does not experience loser’s regret. If vi ≤ v1 and she does not
win, then vi ≤ v2, which means that regret is max{vi − v2, 0} = 0.9 Intuitively, no losing bidder
prefers to have won the object and, therefore, does not experience regret. Thus, bidders do not
experience regret in the truth-telling equilibrium of a second-price auction. She has gain

πi(vi, v1, v2) =

 vi − v2 if vi > v2

0 else.

8We use mnemonic notation as much as possible, and therefore choose ri for regret. We also follow standard
notation and use r for the hard reserve price. They are clear from context.
9This includes the zero probability case in which two bidders have the same value, and bidder i loses the tie-break.
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Once again we write the utility of agent i as a convex combination of gain and regret.

ui

(
vi, v1, v2

)
=

 β(vi − v2) if vi = v1

0 if vi ̸= v1.

The fact that there is no regret in the truth-telling equilibrium of a second-price auction is
critical for our later analysis; high-value bidders are willing to accept a premium on the winning
price to participate in a second-price auction and avoid the exposure to regret in the first-price
auction.

1.4. Remarks on Regret. Regret theory models choice under uncertainty when an agent’s
utility function depends negatively on the best possible outcome. When agents make decisions
based on incomplete information, they base their decisions in expectation of what they think
will happen. After all information is revealed, an agent evaluates the results of her choices based
on the realized outcome and the optimal outcome that could have transpired had she acted
differently. In particular, a losing bidder in an auction experiences loser’s regret when her value
exceeds the sale price. Similarly, a winning bidder experiences winner’s regret when the sale
price exceeds the next highest bid. In both cases, regret is the difference between gain under
complete and incomplete information.10 In particular, we incorporate regret as a linear and
additively separable component of the utility function.

We restrict our analysis to loser’s regret for two reasons: salience and explanation of overbidding.
Loser’s regret is salient because the final sales price of an auction is almost always public
knowledge. As a result, losing bidders can calculate the magnitude of their lost gains and thus
regret. Bidders therefore anticipate loser’s regret, which may increase their bids. On the other
hand, losing bids are not usually disclosed, meaning the winner never learns by how much they
overpaid. Indeed, auction houses and other institutions have little incentive to publish losing
bids. Suppose bidders know that they will learn the losing bids upon winning. In that case,
they have increased anticipation of winner’s regret, and winner’s regret induces bidders to shave
bids, both theoretically and empirically. Thus, from a market design perspective, auction houses
prefer not to publish information about losing bids.

Loser’s regret can also explain why agents tend to overbid in first-price auctions, while
winner’s regret cannot. In Appendix A, we derive analogous results for a utility function that
incorporates both loser’s and winner’s regret. We show that if bidders place more weight on
winner’s regret than loser’s regret, they will underbid in first-price auctions. Since we empirically

10Our definition of regret follows that of Engelbrecht-Wiggans (1989).
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and experimentally observe overbidding, it is reasonable to assume bidders more heavily consider
loser’s regret.

2. Analysis

In Section 2, we derive monotonic bidding functions for first-price and soft-floor auctions with
regret and use them to calculate the seller’s expected revenue. We prove that so long as the
weight on regret 1 − β > 0, optimal soft-floor auctions provide strictly more expected revenue
than first-price auctions. Further, if the first-price auction has optimal hard reserve r > 0,
soft-floor auctions are also more efficient.

2.1. First-Price Auction. In the presence of loser’s regret, the bidding behavior of agents will
reflect their concern for failing to win at a favorable price. We assume that b(·) is a symmetric,
monotonically increasing, and continuously differentiable equilibrium bidding strategy. Say
bidder i bids bi = b(vi). Let Q(v) = F (v)n−1 denote the distribution of the maximal value of the
other n − 1 bidders, and let Q′(v) = q(v). Then bidder i has expected utility

U(vi, bi) = β(vi − bi)Q(vi) − (1 − β)
∫ vi

bi

(vi − bj)dQ(vj).(2)

Using (2), we can characterize the unique symmetric Nash equilibrium bidding function.

Proposition 1 (First-Price Auction Bidding Function).
The unique symmetric Nash equilibrium bidding function in a first-price auction with hard reserve

r is given by

b(v) = v −
∫ v

r

(
F (z)
F (v)

)n−1
β

dz.(3)

All proofs are in the appendix. When β = 1, (3) recovers the standard first-price auction
equilibrium bidding function. As β falls and bidders care more about regret, the integrand
decreases, and agents bid higher. As β approaches 0, agents bid close to their true value.

2.2. Profit in First and Second-Price Auctions. To find the seller’s expected revenue in
first and second-price auctions, define the density functions of the largest and second largest
values. By independence, the largest value v1 has a distribution

F1(x) = Pr[v1 ≤ x] = F (x)n,

and density function

f1(x) = nF (x)n−1f(x).(4)
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To derive the distribution of the second largest value v2, break it into two mutually exclusive
cases. The probability that all values are less than x is Pr[v2 ≤ x] = F (x)n, and the probability
that exactly one value exceeds x is (1 − F (x))F (x)n−1. There are n choices for which the value
exceeds x. Together,

F2(x) = Pr[v2 ≤ x] = F (x)n + nF (x)n−1(1 − F (x)).

This yields a density function

f2(x) = n(n − 1)F (x)n−2(1 − F (x))f(x).(5)

It is now easy to compute the revenues generated from first and second-price auctions. The
revenue generated from a first-price auction with reserve price r is given by

(6)
∫ 1

r
b(v)f1(v)dv =

∫ 1

r

v −
∫ v

r

(
Q(z)
Q(v)

) 1
β

dz

nF (v)n−1f(v)dv.

The revenue of a second-price auction with reserve r is the probability that only one person
participates and thus pays r plus the probability that at least two people participate; the winner
pays the second highest value.

(7) n(1 − F (r))F (r)n−1r +
∫ 1

r
vf2(v)dv.

Proposition 2 (First-Price vs. Second-Price Auction).
In the presence of regret, a first-price auction revenue dominates a second-price auction.

So long as bidders place positive weight on regret, first-price auctions outperform second-price
auctions. Intuitively, since there is no regret in a second-price auction, we can compare the
revenue of a first-price auction with and without regret. Since loser’s regret induces more
aggressive bidding, a first-price auction with regret has greater revenue.

2.3. Soft-floor auction. We return to our general model set-up with a soft floor s ≥ r. A
soft-floor auction has two components: if the winning bid exceeds s, payment is determined
by second-price auction rules, and if the winning bid is less than s, payment is determined
by first-price auction rules. The expected utility of a bidder can therefore be described as a
composite of the expected utility they receive in the two regions.

Say bidder i has value vi and bids bi. As in (1), we let b1 denote the maximum bid, and b2

the second highest bid. Considering the possibility of winning in both the first and second-price
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auctions, bidder i has gain

πi

(
vi, bi, b1, b2

)
=



vi − b2 if s < b2 < b1 = bi = vi

vi − s if b2 ≤ s < bi = b1

vi − bi if b1 = bi < s

0 else.

Bidder i can gain if she has the highest bid and it exceeds the soft floor (the first two lines), or if
she has the highest bid and it is less than the soft floor (the third line). She can only experience
regret, however, if she bids beneath the soft floor. In particular, she has regret

ri

(
vi, bi, b1, b2

)
=


vi − b1 if bi < b1 < vi

vi − s if b2, bi < s < vi, b1

0 else.

The first condition says that bidder i loses in the first-price auction, but the winning bid does not
exceed her value. The second condition says that the winning bidder is alone in the second-price
auction and therefore pays the soft floor s, but that the value of bidder i exceeds s and she thus
wishes she had participated in the second-price auction.

In the symmetric equilibrium of a soft-floor auction, a threshold value w > s determines an
agent’s bidding behavior. Proposition 4 characterizes the relationship between s and w, but first,
we must determine how the threshold shapes the bidding behavior.11 If the bidder has value
vi > w, she participates in a second-price auction and bids truthfully. If she has value vi ≤ w,
she bids as she would in a first-price auction and, therefore, bids according to (3).12 Let b(·)
denote (3), the first-price auction bidding function. Define its inverse function

ϕ(·) := b−1(·),(8)

so that ϕ(x) is the value a bidder must have to bid x. Since b(·) is strictly increasing, its inverse
ϕ(·) is well-defined. We use ϕ(·) to help characterize the soft-floor auction bidding function. So
long as at least some bidders wish to participate in the second-price auction (w < b(1)), the
soft-floor auction bidding function is a composite of truthful bidding in the second-price auction
component, and bidding according to b(·) in the first-price auction component (see Figure 1 for
an illustration). If no bidder wishes to participate in the second-price auction (w ≥ b(1)), then
the auction reduces to a first-price auction and all agents bid according to b(·).

11One way to think about this is to pretend that the seller picks threshold w instead of soft floor s, and then to
back out the necessary s to achieve that w.
12Formally, if vi = w, she is indifferent between the two auctions.
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10

s w

bids

B(v) = b(v) B(v) = v

First price rules Second price rules

Figure 1. The structure of the bidding strategies when the threshold w < b(1)

Proposition 3 (Soft-Floor Auction Bidding Function).
Let w < b(1). Then the soft-floor auction has a unique symmetric Nash equilibrium

B(v) =


b(v) if v ≤ ϕ(w)

v if v > ϕ(w),
(9)

If w ≥ b(1), the soft-floor auction reverts to a first-price auction and B(v) = b(v).

Proposition 3 says that bidders with values above the threshold bid as they would in a
second-price auction, and bidders with values below the threshold bid how they would in a
first-price auction. If the threshold is too high, all bidders enter the first-price auction.

The chosen soft floor s and the exogenous level of regret determine the threshold w. When
bidders have no regret, b(w) = s, but introducing regret causes w to rise. To determine the
exact relationship between s and w, consider when bidder i has value vi = w and is therefore
indifferent between participating in the first or second-price auction. Equating her expected
utility in each portion of the soft-floor auction derives a relationship between s and w.

Proposition 4 (Soft Floor Participation Threshold).
The relationship between s and w is given by

s(w) = w − β(w − b(w))F (w)
βF (w) + (1 − β)(n − 1)(1 − F (w)) .(10)

Further, w ≥ s, with equality if and only if w = s = r or β = 0.

The structure of Proposition 4 is counter-intuitive in that s is exogenous and w is endogenous.
However, it is generally impossible to solve for w, and isolating s(w) allows for the direct
comparison of revenues between auctions.

2.4. Soft-Floor Auction Revenue. To calculate the expected revenue in a soft-floor auction,
consider three cases:
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(1) vj ≤ w for all j. Bidders participate in the first-price auction, giving the item to the
highest bidder. ∫ w

r
b(v)f1(v)dv =

∫ w

r
b(v)nF (v)n−1f(v)dv.

(2) Exactly one bidder j has a value higher than w, so j wins at price s. There are n choices
for who wins, the probability the winner has a value greater than w is 1 − F (w), and the
probability all other bidders have a value less than w is F (w)n−1. Expected revenue is

n(1 − F (w))F (w)n−1s(w).

(3) At least two bidders have values greater than w, and the winner pays the second-highest
bid. ∫ 1

w
vf2(v)dv =

∫ 1

w
vn(n − 1)F (v)n−2(1 − F (v))f(v)dv.

Combining these three possible scenarios gives expected revenue as a function of w.

R(w) =
∫ w

r
b(v)f1(v)dv + n(1 − F (w))F (w)n−1s(w) +

∫ 1

w
vf2(v)dv.(11)

We use (11) to prove that a soft-floor auction is revenue-equivalent to a first and second-price
auction when bidders maximize their gain (β = 1).

Proposition 5 (Soft-Floor Auction No Regret).
If bidders only maximize their gain, then a soft-floor auction with hard reserve r and soft floor

s ≥ r is revenue-equivalent to a first-price auction with hard reserve r.

The Revenue Equivalence Theorem proves Proposition 5, but it is also possible to calculate
their revenues using (11) explicitly. The latter approach allows us to compare the revenues of
various auction formats when bidders care about both gains and regret.

2.5. Comparing Auction Revenues. Using (11), we can directly compare the revenues of a
soft-floor auction and first and second-price auctions in the presence of regret.

Proposition 6 (Soft-Floor Auction Beats First and second-price auctions).
Consider a first-price, second-price, and soft-floor auction with hard reserve r ∈ [0, 1). Then,

in the presence of regret, a soft floor s > r exists such that the soft-floor auction earns more

revenue than the first or second-price auction.

Proposition 6 says that so long as bidders care about monetary gain and regret, if all three
auctions share the same hard reserve, the seller can choose a soft floor such that the soft-
floor auction yields strictly more revenue in expectation. The proof proceeds by showing that
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when w = 1—which reduces the soft-floor auction to a first-price auction—lowering w slightly
increases revenue compared to a first-price auction. Proposition 2 shows that a first-price auction
outperforms a second-price auction, which completes the proof. It is not true, however, that any

soft floor suffices. Indeed, setting s = r reduces the soft-floor auction to a second-price auction,
which is worse than a first-price auction. We use Proposition 6 in our proof of Proposition 7.

Proposition 7 (Soft-Floor Auction More Efficient and Profitable).
Consider a first-price auction with optimal hard reserve r and a soft-floor auction with optimal

hard and soft reserves. Then, in the presence of regret, a soft-floor auction earns strictly more

revenue and is weakly more efficient than the first-price auction. Further, if r > 0, the soft-floor

auction is strictly more efficient. The result follows identically for a second-price auction.

Proof. Proposition 6 proves introducing a soft floor increases revenue. To establish efficiency, it
suffices to show that the optimal hard reserve in a soft-floor auction is lower than the optimal
reserve in both first and second-price auctions. Indeed, the optimal reserve price in a first-price
auction increases with the support of the values. Conversely, if the range over which bidders
enter the first-price auction decreases, so does the reserve price. ■

Proposition 7 shows that the optimal soft-floor auction outperforms the optimal first and
second-price auctions concerning revenues and efficiency. Further, so long as the optimal first or
second-price auction is inefficient—if the reserve exceeds zero, the good might not be sold—the
soft-floor auction is more efficient.

Proposition 7 says nothing about the optimal choice of hard reserve r. Figure 2 illustrates
Proposition 7 in the case of two bidders with uniform distributions, which is a standard
experimental setting (which we also use). Even in this simple case, calculating the optimal hard
reserve and soft floor is difficult. In Appendix A.2, we derive parametrization for all three auction
formats, assuming two bidders with independent values drawn from a uniform distribution.
(Figure 2 illustrates that in our experimental setting, the optimal hard reserves in the first-price
and soft-floor auctions are very similar, so we do not expect significant efficiency differences in
our laboratory study and therefore focus on revenue comparisons.)

We showed that for any level of regret β ∈ (0, 1), an optimal soft-floor auction increases
revenue and improves efficiency compared to a first-price auction. Nonetheless, there may be a
different auction format that earns more revenue. Incorporating loser’s regret makes analyzing
the optimal auction format difficult and would most likely require a novel approach beyond the
tools used in Riley and Samuelson (1981).
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3. Risk Aversion vs. Regret

Risk aversion is frequently presented as a competing explanation for overbidding in first-price
auctions. However, laboratory evidence often finds that regret is more important. Our work
contributes to this evidence by showing that soft-floor auctions with risk-averse bidders should
yield lower auction revenues.

Consider the same utility-maximizing model set-up with β = 1, but assume bidders have
thrice differentiable utility function u(x) for strictly concave u(·), and normalize u(0) = 0. Let
b(·) denote the unique symmetric Nash equilibrium bidding strategy of a first-price auction, and
note that it must be increasing.13 In equilibrium, a type-v bidder has expected utility

Q(v)u(v − b(v)).

We now derive the relationship between the soft floor s and the threshold w for participating in
the second-price auction. Let bidder i have type vi = w. Participating in the first-price auction
yields expected utility

Q(w)u(w − b(w)).

If bidder i instead participates in the second-price auction, she faces two possible scenarios.
13The requirements on u(·) are innocuous, and there is in fact a unique (symmetric) equilibrium in a first-price
auction: see Maskin and Riley (1984).
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(1) Bidder i is alone in the second-price auction. This occurs with probability Q(w); her
gain is w − s.

(2) Bidder i is not alone in the second-price auction. Then, the winning bid is no smaller
than w, so bidder i cannot gain.

Together, this means she has expected utility

Q(w)u(w − s).

Since a type w bidder is indifferent between participating in the first or second-price auction,

Q(w)u(w − s) = Q(w)u(w − b(w)).

Since u(·) is strictly increasing, we conclude

s = b(w)(12)

w = b−1(s).

In other words, the threshold w is determined by the bidder type who would bid exactly s in a
first-price auction. For (12) to hold, it must be that s ≤ b(1), and indeed this is the case, as then
bidders will only choose to participate in the first-price auction (since bidding b(1) guarantees
the object).

Proposition 8 (Risk Aversion with Soft Floor).
If bidders are risk averse, then a first-price auction revenue dominates a soft-floor auction.

Proposition 8 demonstrates that when facing risk-averse bidders, a soft-floor auction is less

attractive to the seller than a first-price auction.

4. Experimental Design and Results

In Section 4, we test our theoretical predictions. First, we illustrate—as suggested by
Proposition 6—that a soft-floor auction with a sufficiently high soft floor consistently yields
statistically and economically significantly higher revenues than a first-price auction while being
equally efficient (Section 4.2). We also find that the best soft-floor auction with a non-zero hard
reserve in our experiment revenue dominates all first-price auctions with a non-zero hard reserve
price. It also efficiency dominates the first-price auction with the highest revenue (Section 4.3).
Lastly, we show that soft floors are even more attractive than predicted by our model (Section 4.4).
While our model implies that increased regret makes bidders more likely to accept the opening
bid, in our experiment many participants will accept any opening price that does not exceed
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their value. All reported p-values for our main treatments come from non-parametric directed
permutation tests based on independent matching group averages with Holm corrections for
multiple hypothesis testing.

4.1. Experimental Design. Table 1 describes the three stages of our laboratory soft-floor
auction.

Table 1. Laboratory Soft-Floor Auction

Stage I Auctioneer announces an opening price of s.
Stage II Bidders decide whether to participate in a second-price auction

with a minimum bid of s.
Stage III Participating bidders compete in a second-price auction by

submitting a bid equal to or larger than s.14 Non-participating
bidders submit a bid larger than hard reserve r and smaller
than s.

Payment Rule The highest bid in the second-price auction wins and pays
the second highest bid (or, in the case of a single bidder,
the opening price). If no bidder participates, the highest bid
smaller than s and larger than r wins, and the winner pays
her winning bid.

Otherwise, our laboratory auction environments follow standard procedures. Two bidders
compete for a single item. We focus on the two-bidder case because hard reserves are especially
important when there are few bidders. Indeed, our model predicts that the reserve price
policy becomes irrelevant as the number of bidders increases.15 Bidders have private values
independently and uniformly distributed between 0 and 100 Experimental Currency Units (ECU).
Values are randomly drawn before the experiment and remain identical across all sessions and
treatments. Each subject participates only in a single treatment (between-subject design) and
competes for 48 rounds in a strangers’ matching protocol. Subjects participating in treatments
with a soft floor, a hard reserve, or both face four levels of s, r, and (s, r) for 12 rounds each
(within-subject design) in random order. Sellers are computerized. Subjects accumulate earnings
during all 48 rounds, and the final payoff is converted to Euros, which are paid out immediately

14In practice, an ascending auction instead of a sealed-bid second-price auction would follow if multiple bidders
accepted the opening price. We use a second-price auction in Stage III for convenience in the laboratory.
Second-price auctions can be conducted much more quickly in the laboratory than in the same number of
ascending auctions. In our private value setting, a second-price auction yields nearly the same outcome as an
ascending auction, both in theory and in the laboratory, when properly explained (see Ariely et al. 2005, Shachat
and Wei 2012). Thus, we anticipate that our results will apply when Stage III is ascending rather than when
a second-price auction is conducted. If at all, the common preference among bidders for ascending auctions
(Cramton 1998) suggests that using an ascending auction may strengthen our results.
15As n → ∞ in (3), the winning bid converges to 1, as bidders compete with more bids and thus lose the
opportunity to shave their bids.
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after the experiment. After each round, bidders learn whether they won the auction, the final
price of the item, and their earnings.

Table 2. Auction Formats and Parametrization

Auction format Level of hard reserve r and soft floor s
First Price Zero r = 0
Soft Floor Zero s ∈ {40, 46, 52, 58}
First Price r ∈ {32, 38, 44, 50}
Soft Floor (s, r) ∈ {(50, 50), (56, 44), (62, 38), (68, 32)}

This framework considers four auction formats: First Price Zero, Soft Floor Zero,
First Price, and Soft Floor. Table 2 summarizes the parametrization. First Price Zero

is a standard, efficient first-price auction with a hard reserve price of zero. Bidders submit bids
between 0 and 100 ECU. The bidder with the highest bid wins the auction and pays her bid.
Soft Floor Zero is a soft-floor auction with a hard reserve of zero. Based on the estimated
weight on regret 1 − β in the First Price Zero sessions, we varied soft floors around the
implied optimal s of 46 and considered s ∈ {40, 46, 52, 58}. We note that ex-post calibration
based on data from actual Soft Floor Zero sessions suggests a higher optimal soft floor s of
51.

Comparing the performance of First Price Zero and Soft Floor Zero allows us to
distinguish between three competing predictions. Under standard assumptions, First Price

Zero and Soft Floor Zero should lead to the same revenue (and full efficiency) by the
Revenue Equivalence Theorem. However, according to our model, the optimal Soft Floor

Zero revenue dominates the optimal First Price Zero (Proposition 6). Lastly, with risk
aversion rather than regret aversion, First Price Zero’s revenue dominates Soft Floor

Zero (Proposition 8).
First Price is a first-price auction with a non-zero hard reserve price r. Bidders submit

bids between r and 100 ECU. Soft Floor is a soft-floor auction with a non-zero hard reserve
price. Comparing First Price and Soft Floor allows us to test the dominance of soft-floor
auctions over first-price auctions with non-zero hard reserve prices (Proposition 7). Again, we
chose parameters to reflect optimal levels of r in First Price and for (s, r) in Soft Floor

based on the estimated weight on regret 1 − β from First Price Zero treatment and our
model. We varied the level of hard reserve around the estimated optimal level of the hard reserve
r = 44 and considered r ∈ {32, 38, 44, 50}. Based on the ex-post calibration, the optimal r is
39. The estimated optimal levels of the soft floor and the hard reserve (s, r) in Soft Floor
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are (56, 43) according to the First Price Zero sessions and (59, 38) based on the ex-post
calibration.

Changing from First Price to Soft Floor only slightly reduces the optimal hard reserve
(from 44 to 43 given the estimated weight on regret), and the corresponding predicted efficiency
effect is less than one percentage point (from 80.64 percent in First Price to 81.51 percent in
Soft Floor). The impact of such effects is likely too small to be detectable in laboratory data.
Thus, we slightly deviate from the estimated optimum and instead choose (s, r) = (56, 44) for
Soft Floor. Our analysis is therefore focused on the effect of adding a soft floor to auctions
with a given hard reserve. As a result, we consider (s, r) ∈ {(50, 50), (56, 44), (62, 38), (68, 32)}.
Note that Soft Floor with (50,50) equals a second-price auction with a hard reserve of 50.
Thus, we disregard First Price with r = 50 and Soft Floor with (50, 50) in the analysis.

All sessions were conducted in April 2023 in the Cologne Laboratory for Economic Research
(CLER).16 Participants were students from the University of Cologne invited via ORSEE (Greiner
2015). The experiment was programmed with a z-tree (Fischbacher 2007). Participants were
randomly matched within matching groups utilizing a stranger’s matching protocol. One
matching group consisted of four bidders. In total, we collected 11,712 bids from 244 subjects.
We collected 14 independent observations for Soft Floor, 15 for First Price Zero and
Soft Floor Zero, and 17 for First Price. Some invited participants failed to attend each
treatment with less than 17 observations. Sessions lasted around 90 minutes, and the average
payoff was approximately 16.26 € with a standard deviation of 3.78 €.

4.2. A soft-floor auction beats a first-price auction in terms of revenue. Figure 3 shows
the revenues for the First Price Zero and Soft Floor Zero treatments. For a soft floor
of s = 52, closest to the optimal level according to our model, revenue increases by 14 percent
relative to First Price Zero (p = 0.002). Thus, a soft floor increases revenue, as suggested by
our model (Proposition 6) and contradicting the predictions of standard theory and risk aversion
(Proposition 8). Notably, we find that for all high enough soft floors s, the Soft Floor Zero

revenues exceed the First Price Zero revenue. This includes some soft floors below and
all above the estimated optimal level. The differences are economically large, ranging from six
percent for s = 46 (p = 0.162) to 17 percent for s = 58 (p < 0.001). However, they are only
statistically significant at or above the estimated optimal level. As the revenue is increasing in
the level of the soft floors considered, an even larger soft floor (s > 58) may have resulted in still
greater revenues.

16Pilot sessions were conducted between December 2016 and October 2017 in the Cologne Laboratory for
Economic Research (CLER). See Appendix B.3 for a detailed protocol and results.
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Figure 3. Revenue in First Price Zero and Soft Floor Zero
Notes. The figure reports average revenue on the observation group level. Significance levels are based on
permutation tests with Holm-correction and ∗, ∗∗, and ∗∗∗ denote significance at the 10 percent, 5 percent, and 1
percent levels, respectively.

As predicted by our model, the increase in revenue does not come at the expense of efficiency.
Measuring realized efficiency as a fraction of maximum efficiency, the efficiency of all auctions is
high at about 97 percent. There are no significant differences in efficiency between First Price

Zero and Soft Floor Zero for all levels of the soft floor. Figure 4 shows the frequency
of allocation types. While one might have expected that efficiency would increase when there
are more bids under the second-price rule than under the first-price rule—because second-price
bidding is in dominant strategies (Pezanis-Christou 2002)—we do not find that the share of
items allocated or the highest-valued bidder winning decreases in s.

The results are fully consistent with an initial laboratory experiment conducted as a part
of a pilot study in a similar laboratory environment before the theory was fully developed.
In that study, with a total of 348 subjects, adding a soft floor s = 50 (66) to the first-price
auction significantly increases revenues by more than ten percent, from 40.11 to 44.41 (46.01),
without compromising efficiency (see Appendix B.3 for details).17 We conclude—consistent with
Proposition 6—that adding an optimal (or sufficiently high) soft floor to the first-price auction
robustly increases revenues without sacrificing efficiency. Further, within the range tested, higher
soft floors increase revenues.
17The initial study also included sellers as subjects, in a further treatment. The sellers could choose to implement
a second-price auction, a first-price auction, and a soft-floor auction with different levels of soft floors and hard
reserves. See Appendix B.3 for a detailed protocol and results. Across all auctions, twice as many sellers prefer
the soft-floor auction (66.81 percent) over a first-price auction with a hard reserve (33.19 percent) (p < 0.001).
Moreover, they also choose higher levels of soft floors than hard reserves. This suggest that our results are robust
to including (human) sellers, anticipating the positive effects of (larger) soft floors on revenue.
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Figure 4. Frequency of Allocations in First Price Zero and Soft Floor
Zero

Notes. The figure reports for each treatment achieved efficiency as a share of maximum achievable efficiency
(gray), efficiency loss due to no trade (dark blue), and efficiency loss due to allocation to the low-value bidder
(light blue).

4.3. The best soft-floor auction beats the best first-price auction in terms of revenue

and efficiency. Proposition 7 suggests that, with salient regret, an optimal soft-floor auction
with a non-zero hard reserve revenue dominates and efficiency dominates an optimal first-
price auction with a non-zero hard reserve. Recall, however, that the efficiency improvements
are predicted to be negligible in our simulations and thus controlled away in our laboratory
environment.

Figure 5 illustrates the revenue for the different levels of hard reserve r and soft floor s.
According to our model, the soft-floor auction with (s, r) = (62, 38), closest to the optimal level,
has larger revenue than all first-price auctions. This increase, however, is insignificant, providing
only directional evidence for Proposition 7.

In the experiment, the revenue in Soft Floor strongly increases as the soft floor increases
and the hard reserve decreases. It is maximized for the largest soft floor considered, s = 68,
and not s = 62. The best parametrization of Soft Floor significantly revenue dominates any

parametrization of First Price with substantial increases in revenue between eight percent
(p = 0.049) and 16 percent (p < 0.001). Interestingly, this suggests that trading off a larger soft
floor for a smaller hard reserve will likely cost less in revenue than suggested by our model.
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Figure 5. Revenue in First Price and Soft Floor
Notes. The figure reports average revenue on the observation group level. Significance levels are based on
permutation tests with Holm-correction and ∗, ∗∗, and ∗∗∗ denote significance at the 10 percent, 5 percent, and 1
percent levels, respectively.
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Figure 6. Efficiency in First Price and Soft Floor
Notes. The figure reports average efficiency on the observation group level. Significance levels are based on
permutation tests with Holm-correction and ∗, ∗∗, and ∗∗∗ denote significance at the 10 percent, 5 percent, and 1
percent levels, respectively.

Figure 6 shows the efficiency in Soft Floor and First Price for each level of hard reserve
and soft floor. Efficiency decreases as the hard reserve increases but does not depend on the
presence or size of the soft floor. The decrease in efficiency is driven by non-trades, with their
proportion rising from roughly ten percent for r = 32 to roughly 25 percent for r = 50 in
both Soft Floor and First Price. The revenue of Soft Floor increases as the soft floor
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Figure 7. Distribution of the Weight on Regret 1 − β
Notes. The figure reports the cumulative distribution of the estimated regret parameter 1 − β. For each subject
participating in Soft Floor Zero (n = 60), we run a regression of values on bids below s, resulting in 60
regression parameters. Based on the bidding function (see 29), we calculate (1 − β). We censored 11 estimations
smaller than 0.

increases and the hard reserve decreases. Therefore, the soft-floor auction provides a tool to
reduce the efficiency loss from using hard reserves while still increasing revenue. The highest-
revenue parametrization of Soft Floor not only revenue dominates any parametrization of
First Price, but also leads to significantly higher efficiency than the revenue-maximizing
parametrization of First Price. Notably, the experiment suggests potential efficiency gains
are much larger as the best soft-floor auction has a lower hard reserve (and higher soft floor)
than our model suggests.

4.4. The surprising attractiveness of the soft floor to the bidders. Given the predictions
of our model, we find that high soft floors are surprisingly effective at increasing revenues. One
reason is that the soft floor is remarkably attractive to bidders. The estimated average weight
on regret 1 − β in our sample is 0.41. Our model predicts that 22 percent of bids would accept
the opening price. In the experiment, more than twice this number, 46 percent of bids, do. To
further investigate, we analyze individual bidding behavior and find that the bidder’s regret
aversion varies substantially. We use the bidding function from our model (see 29) to estimate
each bidder’s weight (1 − β) by running a regression of their values on bids below s in the
soft-floor auctions. This yields the cumulative distribution of weights across our subjects shown
in Figure 7.18 More than 80 percent of bidders experience regret, and the regret weight 1 − β > 0
is roughly uniformly distributed on (0, 1] according to our measure.19

18As the function simplifies if and only if r = 0, we only estimate it for the subjects in Soft Floor Zero
treatment.
19The estimated weight on regret significantly differs from zero for 80 percent of these subjects.
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Recall that our model parameter w is defined as the cutoff value at which a bidder is willing
to accept the soft floor. While the cutoff without regret in our auction environment is 100, the
model predicts that the cutoff w decreases with the weight on regret 1 − β. The model thus
suggests that the smaller a bidder’s cutoff value, the more willing she is (in terms of a larger
range of values assigned to her) to accept the soft floor. We compute the individual cutoffs
most consistently, i.e., leading to the fewest violations, with each bidder’s decision to accept the
opening bid.20 The data confirm the predicted negative relationship between w and (1 − β) with
Spearman correlations of −0, 29 if s = 40 (p = 0.027), −0, 33 if s = 46 (p = 0.011), and −0, 16 if
s = 52 (p = 0.219).21

Figure 8 compares the cutoff values predicted by our model (line) and estimated cutoffs based
on our laboratory data (points). We use normalized cutoffs (w − s) to ensure comparability
across soft floors. As all estimated cutoffs (points) are below the predicted cutoffs (line), the
model strongly underestimates the willingness to accept the opening price for all bidders.

The attractiveness of the soft floor beyond the predictions of our model contributes to
explaining why the soft floor outperforms the hard reserve. We found that combining the soft
floor and hard reserve can raise revenue more than a hard reserve alone, in particular for rather
high soft floors.

The soft floor mirrors the hard reserve’s positive effects on revenue (by pushing bidders with
sufficiently high values above the opening price). At the same time, it mitigates against the
hard reserve’s negative effects (by avoiding efficiency losses when values are below the opening
price). In our experiment, roughly 98 percent of bids in Soft Floor and First Price accept
non-zero hard reserves if the hard reserve is below the bidder’s value. Notably, 83 percent of
bids in Soft Floor and 88 percent in Soft Floor Zero also accept soft floors if the floor
is below the bidder’s value. In this sense, the soft floor captures more than four-fifths of the
revenue-increasing mechanism of the hard reserve. In contrast to a hard reserve, however, bidders
with values below the soft floor still bid a positive amount in 80 percent of cases in Soft Floor

and 87 percent in Soft Floor Zero. These effects explain why the soft floor does better than
the hard reserve in terms of revenue and efficiency. Lastly, this suggests that while it may be
hard to determine the optimal combination of soft floor and hard reserve when designing the
auction, it’s better to err on the side of setting a soft floor too high and a hard reserve too low,
than soft floor too low and a hard reserve too high.

20Note that our model assumes a uniform weight on regret that is common knowledge. Our empirical analysis
supposes that the weight on regret is neither uniform nor common knowledge.
21The correlation is not defined for s = 58 as all bidders accept any opening price above their value for this soft
floor.



24 SOFT-FLOOR AUCTIONS

(a) s = 40

0.2 0.4 0.6 0.8 1

20

40

60

(1 − β)

w − s

(b) s = 46

0.2 0.4 0.6 0.8 1

20

40

60

(1 − β)

w − s

(c) s = 52

0.2 0.4 0.6 0.8 1

20

40

60

(1 − β)

w − s

(d) s = 58

0.2 0.4 0.6 0.8 1

20

40

60

(1 − β)

w − s

Figure 8. Normalized Cutoff Value and Weight on Regret
Notes. The figures report cutoff values that are most consistent with our data for each subject in Soft Floor
Zero (n = 60) and the cutoff value function conditional on the weight on regret predicted by the model (see the
bidding function (see 29)). We derive the cutoff values by finding values minimizing violations of observed
acceptances of opening prices.

We can think of several other reasons why the soft floor is more attractive to bidders than
our model predicts. First, not accepting the opening price implies exclusion from the auction
competition, which may induce additional regret and a “fear of missing out” beyond what
our model of salient regret (based only on forgone monetary gains) captures. Second, the soft
floor may serve as a salient reference point that anchors bidders’ reasoning and subsequent
bidding strategies (Kahneman and Tversky 2013). This is similar to how negotiators anchor their
counteroffers to the first offer received (Galinsky and Mussweiler 2001) or bidders anchor their
bids to previous prices (Beggs and Graddy 2009). There are also higher cognitive costs associated
with determining optimal bids in first-price auctions compared to second-price auctions (Kagel
and Levin 1993, Kirchkamp and Reiß 2011), with or without regret. Bidders may prefer to avoid
these costs by accepting the soft floor, which provides a cognitively simple bidding strategy. This
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also aligns with the concept of “satisficing” introduced by Simon (1955), where decision-makers
opt for satisfactory solutions rather than optimal ones to reduce cognitive burden.

In conclusion, the attractiveness of soft floors in auctions stems not only from salient regret
but likely from a complex interplay of psychological, cognitive, and strategic factors—which we
cannot disentangle in the context of our laboratory experiment. However, such additional factors
only strengthen our conclusion that the soft floor is behaviorally robust enough to increase
auction revenues without sacrificing efficiency.

5. Conclusion

Conventional auction theory advises that reserve prices should be used to increase auction
revenues—especially in instances with few bidders. The use of hard reserves, however, has
downsides. It reduces efficiency if the highest bidder’s value is above the seller’s value but
less than the reserve price. In practice, many sellers find it difficult to commit to a hard
reserve. Unsold items are often re-auctioned at a lower opening price as suggested by the Coase
Conjecture. Soft floors are widely used, typically without explicit reference, to encourage the
sale of the object. This paper provides a rationale beyond the intuition of Coase.

We show that when bidders regret losing, soft-floor auctions can circumvent undesirable
efficiency loss and commitment problems associated with hard reserves while improving revenues.
Intuitively, whereas bidders may experience regret in a first-price auction—in which they shade
bids—when the good is sold at a price below their value, they never experience regret in a
second-price auction if they bid their value. Thus a second-price or ascending auction motivates
bidders to accept the opening price and avoid exposure to regret.

We suggest that two factors may contribute to the effectiveness of the soft-floor auction in
practice. The first is that the high bidder wins and has positive gains, and all losing bidders
prefer to lose. Accepting the opening price rewards the bidder with entry into a regret-free
competition. The second is the regret of losing at a favorable price. In a setting in which the
bidder is representing a private company or a public entity, entering the second-price auction
allows the bidder to avoid having to explain why they failed to compete.

Our model makes three key predictions. First, regret aversion explains the empirical observa-
tions that the revenue in first-price auctions is larger than in second-price auctions. We note
that risk aversion could also explain overbidding in first-price auctions. Second, regret aversion
suggests that the revenue of the soft-floor auction dominates the revenue of a first-price auction
without a hard reserve price. This prediction is contrary to the prediction of risk aversion, which
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suggests the first-price auction will lead to a larger revenue. Third, the soft-floor auction with a
hard reserve revenue and efficiency dominates the first-price auction.

We test our main hypotheses in a controlled laboratory experiment. In a setting with no hard
reserve price, we find that sufficiently high soft floors lead to higher revenue than first-price
auctions. We can therefore rule out risk aversion as an alternative explanation for overbidding
in first-price auctions. Further, our experiment shows that the soft floor is even more attractive
than our model suggests. While our model implies increased regret makes bidders more likely to
accept the opening bid, many accept any opening price below their value. In a setting with a
hard reserve price, we find that the best soft-floor auction leads to higher revenue and higher
efficiency than the best first-price auction with a hard reserve. Indeed, the soft floor captures
most of the revenue-increasing effects of the hard reserve while mitigating the hard reserve’s
revenue-decreasing effects. Thus, increasing revenue is combined with almost full efficiency.

We test our theory in a situation most favorable to the standard reserve price theory because
we abstract from four practical advantages of soft-floor auctions: 1) the soft floor can protect
the seller from weak competition without commitment to a hard reserve price, 2) the soft floor
encourages participation by not excluding low-value bidders, 3) bidders acting as agents for
others can avoid blame by accepting the opening price, and 4) the soft-floor auction may have
other behavioral reasons for its performance, such as anchoring and satisficing. Taken together,
our model and laboratory analyses help explain why regret contributes to the widespread use of
soft-floor auctions.

A task for future research is extending our analysis to multi-item auctions where the central
insights from the one-item setting should extend. In an upcoming multi-band spectrum auction
in Thailand, the regulatory agency considered a specific version of a soft-floor auction tailored
to multiple units (Cramton et al. 2025): First, bidders state demands at or below the opening
price. Second, for products with demand less than supply at the opening price, the auctioneer,
after receiving the bids, may select a lower starting price for the subsequent ascending auction.

Although our analysis is limited to private value auctions, we anticipate that our results would
extend to the case of interdependent values as in Ausubel et al. (2014). Like with demand
reduction, our results deliver strict improvements with soft-floor auctions and thus should remain
when marginal interdependent value elements are introduced.
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Appendix A. Theory

A.1. Auxiliary Results and Proofs. The appendix contains several auxiliary results and
proofs.

Proof of Proposition 1. We prove a more general result that incorporates both winner’s regret
and loser’s regret. Bidder i has value vi and bids bi = b(vi). As in the main text, she has expect
gain

Π(vi, bi) = (vi − bi)Q(vi)

and expected loser’s regret

RL(vi, bi) =
∫ vi

bi

(vi − bj)dQ(vj).

She also has expected winner’s regret

RW (vi, bi) =
∫ vi

0
(bi − bj)dQ(vj).

Let α, β ∈ [0, 1] be the weights on winner’s and loser’s regret such that (1 − α − β) ∈ [0, 1].
Define the expected utility of bidder i as

U(vi, bi) = (1 − α − β)Π(vi, bi) − αRW (vi, bi) − βRL(vi, bi)

= (1 − α − β)(vi − bi)Q(vi) − α
∫ vi

0
(bi − bj)dQ(vj) − β

∫ vi

bi

(vi − bj)dQ(vj).

Bidder i chooses bi to maximize U(vi, bi). Since the bidding function is monotonically increasing
and continuously differentiable, it has a well-defined inverse ϕ(bi) = vi. Use it to find first-order
conditions.

max
bi

(1 − α − β)(vi − bi)Q(ϕ(bi))−α
∫ vi

0
(bi − bj)dQ(ϕ(bj)) − β

∫ vi

bi

(vi − bj)dQ(ϕ(bj))

0 = −(1 − β)Q(ϕ(bi)) + (1 − α − β)(vi − bi)q(ϕ(bi))ϕ′(bi) + β(vi − bi)q(ϕ(bi))ϕ′(bi)

ϕ′(bi) = (1 − β)Q(ϕ(bi))
(1 − α)(vi − bi)q(ϕ(bi))

.

Since vi = ϕ (bi (vi)) and ϕ′ (bi (vi)) = 1/b′
i (vi),

(13) db

dv
= 1

ϕ′(b) = 1 − α

1 − β
(v − b) q(v)

Q(v) .
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We drop the subscript i to emphasize that bidding formula is symmetric. Note (13) is a linear
first-order ordinary differential equation. Let bi = y and vi = x. Further, define

P (x) = (1 − α)q(x)
(1 − β)Q(x) , R(x) = x

(1 − α)q(x)
(1 − β)Q(x) , y = uv and y′ = u

dv

dx
+ v

du

dx
.

Then by (13),

R(x) = y′ + P (x)y

R(x) = u
dv

dx
+ v

(
du

dx
+ P (x)u

)
.(14)

Since y = uv, (14) has a degree of freedom. Set du
dx

+ P (x)u = 0 to obtain

0 = du

dx
+ P (x)u

du

u
= −P (x)dx

ln(u) = −
∫

P (x)dx

u = e−
∫

P (x)dx.(15)

Insert (15) into (14).

R(x) = dv

dx
× e−

∫
P (x)dx

dv = R(x)
e−
∫

P (x)dx
dx

v =
∫ (

R(x)
e−
∫

P (x)dx

)
dx.(16)

Substituting (15) and (16) for u and v gives

y = uv = e−
∫

P (x)dx
∫ (

R(x)
e−
∫

P (x)dx

)
dx.(17)

Insert P (x) and R(x) into (17) to get

y = e−
∫

P (x)dx ×
∫ (

R(x)
e−
∫

P (x)dx

)
dx

y = e−
∫ (1−α)q(x)

(1−β)Q(x) dx ×
∫  (1−α)xq(x)

(1−β)Q(x)

e−
∫ (1−α)q(x)

(1−β)Q(x) dx

 dx.(18)

Observe that

−
∫ (1 − α)q(x)

(1 − β)Q(x)dx = −(1 − α) log(Q(x))
(1 − β) + c = log

(
Q(x)− 1−α

1−β

)
+ c.
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Thus (18) becomes

y = e
log
(

Q(x)− 1−α
1−β

)
+c

×
∫ 

(1−α)xq(x)
(1−β)Q(x)

e
log
(

Q(x)− 1−α
1−β

)
+c

 dx

= ec × Q(x)− 1−α
1−β ×

∫  (1−α)xq(x)
(1−β)Q(x)

ec × Q(x)− 1−α
1−β

 dx

= Q(x)− 1−α
1−β ×

∫  (1 − α)xq(x)
(1 − β)Q(x)1− 1−α

1−β

 dx.

Integrate by parts to obtain

y = Q(x)− 1−α
1−β ×

∫  (1 − α)xq(x)
(1 − β)Q(x)1− 1−α

1−β

 dx

= Q(x)− 1−α
1−β

(
xQ(x)

1−α
1−β −

∫
Q(x)

1−α
1−β dx

)
= x − Q(x)− 1−α

1−β ×
∫

Q(x)
1−α
1−β dx.

Finally let y = b and x = v, and replace the integral variable with a dummy variable z integrated
from our lower bound r to the value v to obtain

b(v) = v −
∫ v

r

(
F (z)
F (v)

)(n−1) 1−α
1−β

dz.(19)

To recover (3) in Proposition 1 in the text, set α = 0 and switch the labels on the coefficients for
the gain and loser’s regret. ■

Remark. When α = β, (19) confirms that winner’s and loser’s regret offset—as argued in
Engelbrecht-Wiggans (1989)—and agents bid according to the standard monetary gain-maximizing
bidding formula for first-price auctions. Interestingly, even if α = β = 1/2 and bidders ignore
gain and only aim to minimize expected regret, they still bid as if maximizing expected gain.

We prove a more general version of Proposition 2. In particular, we prove that when bidders
face regret, a first-price auction revenue dominates a second-price auction if β > α and is revenue
dominated by a second-price auction if α > β.

Proof of Proposition 2. With both winner’s and loser’s regret, the revenue generated from a
first-price auction with reserve price r is given by

(20)
∫ 1

r
b(v)f1(v)dv =

∫ 1

r

v −
∫ v

r

(
Q(z)
Q(v)

) 1−α
1−β

dz

nF (v)n−1f(v)dv.
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A second-price auction has the same expected revenue with or without regret. By the Revenue
Equivalence Theorem, without regret, a first-price auction and a second-price auction generate
the same expected revenue. Hence, we compare the expected revenue of a first-price auction
with regret to that of a first-price auction without regret. The expected revenue of a first-price
auction without regret is given by∫ 1

r

(
v −

∫ v

r

(
Q(z)
Q(v)

)
dz

)
nF (v)n−1f(v)dv.(21)

Subtracting (21) from (20) gives

∫ 1

r

∫ v

r

(
Q(z)
Q(v)

)
−
(

Q(z)
Q(v)

) 1−α
1−β

dz

nF (v)n−1f(v)dv.

Since Q(·) is non-decreasing, Q(z) ≤ Q(v). If β > α, then 1 − α > 1 − β and

Q(z)
Q(v) >

(
Q(z)
Q(v)

) 1−α
1−β

,

so the integrand is positive. Conversely, β < α means 1 − α < 1 − β and

Q(z)
Q(v) <

(
Q(z)
Q(v)

) 1−α
1−β

,

so the integrand is negative. ■

Remark. Conceptually, the proof is easy, and Engelbrecht-Wiggans (1989) and Filiz-Ozbay and
Ozbay (2007) both provide non-explicit versions. Loser’s regret induces aggressive bidding,
whereas winner’s regret causes conservative bidding. Since these effects exactly offset when
α = β, if one outweighs the other, the seller’s profit either rises or falls. However, we appear to
provide the first explicit calculation to prove it, which has the added practical benefit that it is
then easy to compare revenues for given α and β.

Proof of Proposition 4. Let bidder i have type vi = w. Participating in the first-price auction
yields expected gain

(w − bi)F (w)n−1.

Bidder i has three potential sources of loser’s regret when she participates in the first-price
auction.

(1) If vj ≤ w for all j ̸= i, bidder i experiences regret if she loses but the winning bid is
beneath her value. Since vi = w, any winning bid exceeds her value, and this term
vanishes.
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(2) If vj ≥ w, vk < w for all k ̸= j, by default j wins the second-price auction at price s, and
bidder i has regret of w − s.

(3) At least two other bidders participate in the second-price auction. However, they both
have values of at least w, so the winning price is at least w. Hence, this term also
vanishes.

Thus, bidder i only experiences loser’s regret if exactly one bidder has a value greater than w,
and the other n − 2 have values less than w. There are n − 1 choices for who has a value greater
than w, so the probability that this occurs is

(n − 1)(1 − F (w))F (w)n−2.

Expected loser’s regret is
(n − 1)(1 − F (w))F (w)n−2(w − s).

The expected utility bidder i receives from participating in the first-price auction is

U(w, b(w)) = β(w − b(w))F (w)n−1 − (1 − β)(n − 1)(1 − F (w))F (w)n−2(w − s).(22)

If bidder i instead participates in the second-price auction, she faces two possible scenarios.

(1) Bidder i is alone in the second-price auction. This occurs with probability Q(w) =
F (w)n−1 and her gain is w − s.

(2) Bidder i is not alone in the second-price auction. Then the winning bid is no smaller
than w, so bidder i cannot gain.

There is no regret in a second-price auction, so her expected utility is just her gain.

(23) U(w, b(w)) = βF (w)n−1(w − s).

Since a type w bidder is indifferent between participating in the first or second-price auction, set
(22) equal to (23) to obtain

βF (w)n−1(w − s) = β(w − b(w))F (w)n−1 − (1 − β)(n − 1)(1 − F (w))F (w)n−2(w − s).

Isolating s(w) gives

s(w) = w − β(w − b(w))F (w)
βF (w) + (1 − β)(n − 1)(1 − F (w)) .

To prove w ≥ s, rearrange terms to get

w − s = β(w − b(w))F (w)
βF (w) + (1 − β)(n − 1)(1 − F (w)) .
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Thus w = s if β = 0. For β ̸= 0,

w = s ⇐⇒ β(w − b(w))F (w)
βF (w) + (1 − β)(n − 1)(1 − F (w)) = 0.

This requires F (w) = 0 or w = b(w). In the former case, s = w = 0 ≤ r and in the latter, by
(3), w = r so that b(r) = r. Since s ≥ r, s = r. ■

Proof of Proposition 5. The revenue of a first-price auction without regret is given by (21). Set
β = 1 and subtract (21) from (11) to obtain∫ 1

r
b(v)f1(v)dv −

(∫ w

r
b(v)f1(v)dv + n(1 − F (w))F (w)n−1s(w) +

∫ 1

w
vf2(v)dv

)
=∫ 1

w
b(v)f1(v)dv −

(
n(1 − F (w))F (w)n−1s(w) +

∫ 1

w
vf2(v)dv

)
(24)

By (10), since β = 1, s = b(w). The term in parentheses in expression (24) simplifies to

n(1 − F (w))F (w)n−1b(w) +
∫ 1

w
vf2(v)dv.(25)

If a first-price auction has hard reserve w, then b(w) = w. By (7), if b(w) = w, then (25) is
precisely the revenue of a second-price auction with hard reserve w. Similarly,∫ 1

w
b(v)f1(v)dv

is the revenue of a first-price auction with hard reserve w. By the Revenue Equivalence Theorem,
they are equal. Therefore, expression (24) equals zero, proving that a soft-floor auction is
revenue-equivalent to a first-price auction. ■

Proof of Proposition 6. Proposition 2 proves that a first-price auction revenue dominates a
second-price auction. It is, therefore, sufficient to show that a soft-floor auction revenue
dominates a first-price auction. First observe that by evaluating (10) when w = 1, we get

(26) s(1) = b(1).

We can now use (11) to take the derivative of R(w) with respect to w and evaluate it at w = 1.

∂R

∂w
= b(w)nF (w)n−1f(w) + s′(w)n(1 − F (w))F (w)n−1

+ ns(w)F (w)n−1f(w) (n − 1 − nF (w)) − wn(n − 1)F (w)n−2(1 − F (w))f(w)

∂R

∂w

∣∣∣∣∣
w=1

= nb(1)f(1) + ns(1)f(1)(−1)

= 0.
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The penultimate line uses (26) to substitute s(1) = b(1). Hence, w = 1 is a critical point. To
verify it is a minimum, take the derivative again and evaluate at w = 1.

∂2R

∂w2

∣∣∣∣∣
w=1

= nf(1)
β

× (−βb′(1) + 2(n − 1)(1 − b(1))f(1) − β(n − 1)(1 − b(1))f(1)) .

Use (13) to obtain an expression for b′(1).

b′(v) = v − b

β
× f(v)

F (v) (n − 1)

b′(1) = 1 − b(1)
β

f(1) (n − 1) .

Hence

∂2R

∂w2

∣∣∣∣∣
w=1

= nf(1)2

β

(
−β

(
1 − b(1)

β

)
(n − 1) + 2(n − 1)(1 − b(1)) − β(n − 1)(1 − b(1))

)

= n(n − 1)(1 − β)(1 − b(1))f(1)2

β
> 0.

Since w = 1 is a minimum, a slightly smaller w increases revenue. Since w = 1 is the revenue
with only a first-price auction, a soft-floor auction revenue dominates a first-price auction. ■

Proof of Proposition 8. Let the revenue from a soft-floor auction derived in (11) be denoted
RSFA(r, w). Similarly, let RFPA(r) and RSPA(r) denote equations (6) and (7), the revenue in
a first and second-price auction, respectively. For risk-averse bidders, a first-price auction weakly
revenue dominates a second-price auction.22 Hence we have the following chain of inequalities.

RFPA(r) =
∫ 1

r
b(v)f1(v)dv

=
∫ w

r
b(v)f1(v)dv + RFPA(w)

≥
∫ w

r
b(v)f1(v)dv + RSPA(w)

=
∫ w

r
b(v)f1(v)dv + n(1 − F (w))F (w)n−1w +

∫ 1

w
vf2(v)dv

≥
∫ w

r
b(v)f1(v)dv + n(1 − F (w))F (w)n−1b(w) +

∫ 1

w
vf2(v)dv

=
∫ w

r
b(v)f1(v)dv + n(1 − F (w))F (w)n−1s(w) +

∫ 1

w
vf2(v)dv

= RSFA(r, w).

22See Maskin and Riley (1984).
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The first inequality follows from the fact that for risk-averse bidders, a first-price auction
generates more revenue than a second-price auction. The second inequality follows from the fact
that b(x) ≤ x for all x, and the penultimate equality uses (12). ■

Proof of Proposition 11. We tackle the slightly more general problem of implicitly solving for
the optimal r in terms of w and β for the uniform distribution F (v) = v with n bidders. By (3),
the bidding function is:

b(v) = v −
∫ v

r

z
n−1

β

v
n−1

β

 dz = v −
β
(

v − r
β+n−1

β v
1−n

β

)
β + n − 1(27)

=

(
v(n − 1) − βr

β+n−1
β v

1−n
β

)
β + n − 1 .

Further, (10) gives the relationship between s and w.

s(w) =

w

β − βn −
β2

(
w−r

β+n−1
β w

1−n
β

)
β+n−1 + βnw − nw + n + w − 1


β + (β − 1)n(w − 1) + w − 1

s(w) = w −

w

β2

(
w−r

β+n−1
β w

1−n
β

)
β+n−1


(n − 1)(1 − β)(1 − w) + βw

(28)

Insert (27) and (28) into (11) to obtain the revenue as a function of r and w.

R(r, w) =
nw

(
β2r

β+n−1
β w

(β−1)(n−1)
β

(β−1)n+1 + (n−1)wn

n+1

)
β + n − 1 + (n − 1) ((n(w − 1) − 1)wn + 1)

n + 1

− n(β + (β − 1)n + 1)rn+1

(n + 1)((β − 1)n + 1) + n(1 − w)wn −

n(1 − w)wn

β2

(
w−r

β+n−1
β w

1−n
β

)
β+n−1


(n − 1)(1 − β)(1 − w) + βw

Although complicated, the first-order conditions on r give a manageable expression.

∂R

∂r
=

n

(
β2r

n−1
β w

(β−1)n+1
β

β+(β−1)n(w−1)+w−1 − (β + (β − 1)n + 1)rn

)
(β − 1)n + 1 = 0

r
nβ−n+1

β = w
nβ−n+1

β
β2

(1 + β + nβ − n)((n − 1)(1 − β)(1 − w) + wβ

r∗ = w

(
β2

(1 + β + nβ − n)((n − 1)(1 − β)(1 − w) + wβ)

) β
1+nβ−n

.
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When n = 2,

r∗ = w

(
β2

(3β − 1)((1 − β)(1 − w) + βw)

) β
2β−1

.

Hence if β ∈ [0, 1/3], 3β − 1 < 0 and optimally r = 0. If β ∈ (1/3, 1], r∗ is as above. ■

A.2. Two Bidders with Uniform Distribution. We consider the case of two bidders with
values drawn from the uniform distribution. Since β is determined endogenously, the seller
chooses the reserve price(s) as a function of β. In the first-price auction, we solve explicitly for
the optimal hard reserve r∗(β) and show that it strictly increases in β for β ∈ (1/3, 1]. Then, we
determine the corresponding maximal revenue. The soft-floor auction’s optimal hard reserve
and soft floor are interdependent. We solve for r∗(β) in terms of w, and then we solve several
implicit functions to graph the optimal reserves r∗(β) and s∗(β) and the corresponding threshold
w∗ and maximal expected revenue.

A.3. First-Price Auction. Inserting F (v) = v and n = 2 into (3) gives the bidding function in
a first-price auction with hard reserve r.

(29) b(v) = v

1 + β
+ r

(
r

v

)1/β
(

β

1 + β

)
.

By (4), f1(v) = 2v. Insert (29) into (11) to find the seller’s expected revenue.

RF (r) =
∫ 1

r
b(v)f1(v)dv

=
∫ 1

r

(
v

1 + β
+ r

(
r

v

)1/β β

1 + β

)
2vdv

RF (r) = 2
3(1 + β) + 2r

β+1
β β2

(1 + β)(2β − 1) + 2r3(1 − 3β)
3(2β − 1) .(30)

For given β, the seller picks r to maximize (30).

Proposition 9 (Optimal r in a first-price auction).
The optimal hard reserve r∗(β) is given by

r∗(β) =


0 if β ∈ [0, 1/3]

r(β) =
(
3 − 1

β

) β
1−2β if β ∈ (1/3, 1].

(31)

Further, r(β) is strictly increasing for β ∈ (1/3, 1].
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Proof. The first term of (30) is independent of r. For β ∈ [0, 1/3], the second and third terms of
(30) are weakly negative, and their sum is strictly negative.

2r
β+1

β β2

(1 + β)(2β − 1) + 2r3(1 − 3β)
3(2β − 1) = − 2r

β+1
β β2

(1 + β)(1 − 2β) − 2r3(1 − 3β)
3(1 − 2β) < 0.

Setting r = 0 is thus maximal and gives the total expected revenue

2
3(1 + β) .(32)

Now let β ∈ (1/3, 1]. Taking the derivative of (30) with respect to r gives

∂RF

∂r
=

2
(
βr1/β + (1 − 3β)r2

)
2β − 1 = 0.(33)

There are two solutions to (33):

r ∈

0,

(
β

3β − 1

) β
2β−1

 .

If r = 0, the revenue is given by (32). Rewrite the non-trivial solution as

r(β) =
(

3 − 1
β

) β
1−2β

.(34)

For β ∈ (1/3, 1], (34) strictly increases (see Figure A.1). Insert (34) into (30) to obtain the
expected revenue.

RF (r(β)) = 2
3(β + 1) +

2

3β2

((
( β

3β−1)
1

2β−1
)

−( β
3β−1)

2β
2β−1

)
( β

3β−1)
β

2β−1

2β−1 −
(

β
3β−1

) 3β
2β−1


3(β + 1)

RF (r(β)) = 2
3(β + 1) +

2β
(

β
3β−1

) β+1
2β−1

3(β + 1) .(35)

The second term in (35) is strictly positive for β > 1/3, and the first is the revenue when r = 0.
Hence, (34) gives the optimal r for β ∈ (1/3, 1].23 ■

Proposition 10 (First-Price vs. Second-Price Auction).
For any β ∈ [0, 1), the maximal revenue of a first-price auction is strictly greater than that of a

second-price auction.

23Second order conditions are difficult to prove explicitly but are easily verified graphically.
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r
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Figure A.1. First-Price Auction for Two Bidders, Uniform Distribution

Proof of Proposition 10. By (5), f2(v) = 2(v − v2). The revenue of a second-price auction with
reserve r is independent of β and given by∫ 1

r
vf2(v)dv = 1

3(4r2 + r + 1)(1 − r),

which achieves its maximal value at r = 1/2 and gives a revenue 5/12. In the first-price auction,
the revenue function is strictly decreasing in β and is exactly equal to 5/12 when β = 1. ■

Proposition 10 also follows from Proposition 2.

A.4. Soft-Floor Auction. In a soft-floor auction, the seller optimizes r and s simultaneously.
However, the revenue also depends on w, which, in turn, depends on s. By (11), the revenue as
a function of r, s, and w is given by

R(r, s, w) = 2sw(1 − w) + 2w3 − 3w2 + 1
3 +

2
(w3 − r3) +

3β2r

(
r2−( r

w )
1
β w2

)
1−2β


3(1 + β)(36)

By (10),

s(w) =
w
(

1 − w + wβ − β2 + r
(

r
w

) 1
β β2 + wβ2

)
(1 + β)(1 − w − β + 2wβ) .

Eliminating s from (36) gives

R(r, s(w), w) =
w
(

1 − w + wβ − β2 + r
(

r
w

) 1
β β2 + wβ2

)
(1 + β)(1 − w − β + 2wβ) (2w − 2w2)(37)

+ 2w3 − 3w2 + 1
3 +

2
(w3 − r3) +

3β2r

(
r2−( r

w )
1
β w2

)
1−2β


3(1 + β) .
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First-order conditions on r give the optimal hard reserve for w.

Proposition 11 (Soft-Floor Auction r∗).
In a soft-floor auction with two bidders with uniform values, the optimal hard reserve is given by

r∗ =


0 if β ∈ [0, 1/3]

w
(

β2

(3β−1)(−β+2βw−w+1)

) β
2β−1 if β ∈ (1/3, 1].

The proof presented above solves for r∗ in the slightly more general case of n bidders with
values drawn from the uniform distribution. As anticipated, the optimal hard reserve depends on
the threshold value w, which depends on the chosen soft floor s. The seller’s choice of s uniquely
determines w, and each w corresponds to a unique s. It is, therefore, sufficient for the seller to
choose w, solve the first order conditions of (37) for r and w, and then use (10) to determine
the corresponding s. Unfortunately, the first order conditions of (37) for w prove complicated,
but we use Mathematica to construct Figure A.2, which plots the optimal r, s, and w, and the
corresponding maximal expected revenue, as a function of β.
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Figure A.2. Soft-Floor Auction for Two Bidders with Uniform Distribution

We also consider a soft-floor auction with no hard reserve r = 0. For β ∈ [0, 1/3], the optimal
s and w, and expected revenue, are unchanged since r = 0. For β ∈ (1/3, 1], set r = 0 and take
first-order conditions of (36) to get

w∗ = 2β2 +
√

5β2 − 4β4 + β − 2
2 (2β2 + β − 1) .

Substituting into (28) gives

s∗ =
−4β6 − 2β5 + 10β4 − 6β2 − 2

√
5β2 − 4β4β +

√
5β2 − 4β4 +

(
2
√

5β2 − 4β4 + 2
)

β3 + β

(2β2 + β − 1)2
(√

5β2 − 4β4 + β
) .

The optimal revenue in a soft-floor auction with no hard reserve is given by substituting r = 0, s∗,

and w∗ into (36). The result yields Figure A.3.
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Figure A.3. Optimal s, w, and Revenue for Two Bidders, Uniform Distribution

Combining the revenues from the optimal first-price auction, soft-floor auction with no hard
reserve, and soft-floor auction allows for comparing revenues across auctions.

First Price Auction

Soft Floor Auction, No Hard Reserve

Soft Floor Auction

Comparison of Maximal Revenues

Figure A.4. Comparison of Revenues for Two Bidders with Uniform Distribution

The revenues of the soft-floor auction with and without a hard reserve coincide for β ∈ [0, 1/3]
because the optimal hard reserve is r = 0 in that range. For β > 1/3, the performance of the
soft-floor auction with no hard reserve sharply decreases. By contrast, the first-price auction
always generates strictly lower revenue than the soft-floor auction, confirming Proposition 6, but
by relatively small margins. The introduction of a soft floor indeed increases expected revenue,
but the effect is apparent only for β near 1/2.

Appendix B. Experiment

B.1. Dynamics. Tables B.1 and B.2 show that revenues in the different treatments and
parametrizations are stable across time.
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Table B.1. Revenue in Soft Floor Zero and First Price Zero by round

First Price Zero Soft Floor Zero
s = 40 s = 46 s = 52 s = 58

Period 1 to 12 41.04 39.66 40.31 47.56 50.81
(6.88) (7.73) (8.10) (6.03) (4.83)

Period 13 to 24 42.99 37.83 45.27 47.56
(6.79) (5.98) (2.94) (7.79)

Period 25 to 36 41.10 39.35 43.37 48.41 47.27
(6.42) (7.39) (7.68) (3.68) (6.57)

Period 37 to 48 40.61 42.36 48.18 44.14 47.74
(8.26) (3.48) (9.50) (5.92) (5.58)

Table B.2. Revenue in Soft Floor and First Price by round

First Price Soft Floor
r = 32 r = 38 r = 44 s = 68 s = 62 s = 56

Period 1 to 12 46.28 46.14 45.86 49.85 44.27 41.37
(7.62) (8.11) (11.19) (9.87) (7.72) (11.19)

Period 13 to 24 40.56 44.42 48.81 44.46
(6.12) (6.88) (7.30) (6.58)

Period 25 to 36 40.11 44.65 47.32 49.42 45.70 46.16
(9.08) (5.93) (11.16) (6.53) (9.28) (10.83)

Period 37 to 48 41.80 44.19 44.66 48.13 50.23 41.86
(6.17) (6.72) (12.99) (10.49) (9.25) (24.19)

B.2. Instructions.

General part

Treatment dimensions are: First Price Zero / First Price / Soft Floor Zero /
Soft Floor

Welcome to our experiment!

Please read the following instructions carefully. If you have a question, please raise your hand.
We will then come to you and answer your questions. Communication with other participants is
not allowed during the whole experiment. If you violate this rule, we might exclude you from
the experiment and all payouts.

All participants receive a 4.00 Euro show-up fee. In addition, you can earn further payoffs
depending on your decisions and those of the other participants.

The currency used in this experiment is experimental currency units (ECU). At the end of the
experiment, all ECUs will be converted into euros and paid out in cash. The conversion rate is
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40 ECU = 1 Euro. All decisions and payoffs in this experiment will be treated anonymously. All
participants receive identical instructions.

Experiment

The experiment consists of a total of 48 rounds. In each round, the participants are randomly
matched into groups of two. We ensure that nobody is matched with the same participant in two
consecutive rounds. All rounds are identical and independent of each other. All round earnings
are added and paid out at the end of the experiment. Possible losses will be offset by the 4.00
Euro show-up fee.

In each round, the participants can bid in an auction. A round consists of two stages. The first
stage, the bidders decide participation in the auction [Soft Floor Zero/Soft Floor/First

Price: with a minimum bid] On the second level, bidders can bid on a fictitious good if they
have decided to participate in the auction [Soft Floor Zero/Soft Floor/First Price:
with a minimum bid]

The personal value of the fictitious good (the value) of each bidder varies between the bidders
and the rounds. At the beginning of each round, each bidder is told how much the good is worth
to him in that round. The values are determined randomly and independently for each bidder,
and each ECU-Amount between 0.00 ECU and 100.00 ECU (with two decimal places) is equally
probable.

Participation decision. [First Price Zero / First Price: In the first stage, both bidders
decide whether they wish to participate in the auction [First Price: with a minimum bid.]

[First Price: Bids in the auction must be at least as high as the opening bid. The opening
bid varies between rounds and can take the values of 32 ECU, 38 ECU, 44 ECU, or 50 ECU.]

If both bidders decide not to participate in the auction, none will receive the goods.]

[Soft Floor Zero / Soft Floor: In the first stage, both bidders decide whether to
participate in the auction with an opening bid. Auction bids must be at least as high as the
opening bid.] [Soft Floor Zero: The opening bid is determined before each round of the
experiment. It can take the following values: 40 ECU, 46 ECU, 52 ECU, or 58 ECU.]

[Soft Floor Zero / Soft Floor: If a bidder does not want to participate in the auction,
they can make a purchase price suggestion, which must be between [Soft Floor Zero: 0
ECU][Soft Floor: the minimum price] and the opening bid. Anyone who does not want to
make a purchase price suggestion can decline this option.]
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[Soft Floor: The opening bid and the minimum price were set for each round ahead of the
experiment. They can take the following values: (50 ECU, 50 ECU), (44 ECU, 56 ECU), (38
ECU, 62 ECU), and (32 ECU, 68 ECU). The first value in the parentheses corresponds to the
minimum price, and the second value corresponds to the opening bid. (If the minimum price
equals the opening bid, no purchase price suggestions can be made.)]

[Soft Floor Zero / Soft Floor: If both bidders decide against participating in the auction
with an opening bid, the bidder with the higher purchase price suggestion receives the good. In
this case, they pay their purchase price suggestion. The buyer is determined randomly if both
bidders suggest the same purchase price. If both bidders decide against participating in the
auction with an opening bid and neither of them makes a purchase price suggestion, neither
bidder receives the good, and both bidders end up empty-handed.]

Auction. [First Price Zero: Bidders who participate in the auction place their bids for the
goods at the second stage. Bidders who have decided not to participate do not submit a bid.
The bid must be a minimum of 0 ECU and a maximum of 100.00 ECU.]

[First Price: Bidders who participate in the auction with minimum bid place their maximum
bid for the good at the second stage. Bidders who have decided not to participate do not submit
a bid. The maximum bid must be at least as high as the opening bid and may not exceed 100.00
ECU.]

[First Price Zero / First Price: The bidder who places the higher maximum bid wins the
auction. The price he has to pay corresponds to his bid. If both bidders place the same bid, a
random decision is made about who wins the auction.]

[Soft Floor Zero / Soft Floor: In the second stage, bidders who participate in the auction
with an opening bid submit their maximum bid for the good. Bidders who have decided not
to participate cannot submit a bid. The maximum bid is the maximum price the bidder will
pay for the good. This maximum bid must be at least as high as the opening bid and can be a
maximum of 100.00 ECU. The bidder who submits the higher maximum bid wins the auction.
The price he has to pay corresponds to the second highest bid plus 0.01 ECU.

Exceptions:

⇒ If only one bidder participates in the auction with an opening bid, the price corresponds

to the opening bid, regardless of his bid.

⇒ If both bidders submit the same bid, the auction winner is decided randomly. In this case,

the price corresponds exactly to the maximum bid of the auction winner.
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The maximum bid thus works like a proxy that bids for you at the auction. The proxy always
bids as much as is necessary to be the highest bidder. It does this until your maximum bid is
reached; after that, it drops out. Therefore, the price the winner has to pay never exceeds the
second highest bid plus 0.01 ECU.]

Round payoff. If a bidder receives the good, the round payoff corresponds to his value minus
the price. For a bidder who does not receive the good, the round payoff is 0.00 ECU.

Round payoff =


value − Price, if the bidder receives the good

0, if the bidder does not receive the good

Feedback. At the end of each round, all bidders receive information about the price, the bidder
who received the good, and their round payoff.

B.3. Pilot. Our pilot experiments were conducted prior to the development of the theory. Thus,
parametrization differs. However, experimental protocols were the same. We had two kinds of
pilot sessions. One focuses on buyers in the auctions - as in the main part of the paper - to
determine whether Soft Floor Zero increases revenue (and efficiency), and another focuses
on sellers to investigate whether sellers indeed opt for a soft-floor auction if given the chance.

Pilot sessions were conducted between December 2016 and October 2017 in the Cologne
Laboratory for Economic Research (CLER). Participants were students from the University
of Cologne invited via ORSEE (Greiner 2015). The experiment was programmed with z-tree
(Fischbacher 2007). We conducted two sessions for each of the main treatments, with exogenous
sellers, consisting of 32 (with one exception of 28) participants in each session. Participants
were randomly matched within matching groups utilizing a stranger’s matching protocol. One
matching group consisted of four bidders; thus, we collected 16 independent observations for
each treatment. In First Price Zero, we only had 15 independent observations because
some invited participants failed to attend. For Endo , we collected data from 96 subjects in
four sessions. One matching group consisted of four bidders and two sellers. Thus, we have 16
independent observations for the endogenous seller treatment. We collected 15,800 bids and
1,600 soft floor or hard reserve price decisions from 348 subjects.

B.3.1. Buyer results. In the pilot, we considered treatments First Price Zero, Soft Floor

Zero, and First Price. All treatments were conducted as described in the main part of the
study in Section 4.1. Table B.3 summarizes the parametrization. Note that the treatments
were not parametrized according to our model, as the experiments were run before the models
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were derived. In First Price Zero, we naturally consider the same setting as in the main
experiment. In Soft Floor Zero, we consider two soft floor levels only. A soft floor of s = 50
roughly at the midpoint of values considered in the main experiments and a soft floor of s = 66
larger than any value considered in the main experiment. Lastly, for First Price, we only
considered the optimal hard reserve according to the standard theory of r = 50, which we also
consider in the main experiment.

Table B.3. Auction Formats and Parametrization

Auction format Level of hard reserve r and soft floor s
First Price Zero r = 0
Soft Floor Zero s ∈ {50, 66}
First Price r = 50

A soft-floor auction, with a soft floor of s = 50 and s = 66, significantly increases revenue
compared to a first-price auction without a hard reserve. Similar to our results in Section 4,
the increase is more than 10 percent for s = 50 and more than 15 percent for s = 66. Notably,
behavior in the pilot leads to an estimated weight on regret 1 − β of 0.41 and implies an optimal
soft floor of s = 51. As in the main experiment, we find that the revenue-increasing effect of s

maintains even above the theoretically optimal level, also suggesting that the the attractiveness
of s goes beyond what even our model captures.

r=50 s=50 s=66 r=00
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Figure B.5. Revenue in First Price and Soft Floor Zero in pilot
Notes. The figure reports average revenue on the observation group level. Significance levels are based on
permutation tests with Holm-correction, and ∗, ∗, and ∗ denote significance at the 10 percent, 5 percent, and 1
percent level, respectively.



REFERENCES 49

In the pilot, we also compared the first-price auction with a non-zero hard reserve price to a
soft-floor auction with a hard reserve of zero. Here, we find that the soft-floor auction for both
s = 50 and s = 66 also leads to a significant increase in revenue of around 10 percent. However,
note that the revenue for a first-price auction with r = 50 is almost 10 percent smaller than in
the main experiment.

B.3.2. Sellers: Endogenous Auction Format Choice. The second part of our pilot study focused
on seller choices. In each period, we let sellers choose among the auctions from the main
experiment as explained in Section 4.1. Table B.4 summarizes the menu of choices, which
includes a first-price auction, a second-price auction, and a soft-floor auction with different levels
of soft floors and hard reserve prices. In each period„ the seller must choose the format and the
soft floor or hard reserve level.

Table B.4. Seller Choice Menu

Auction format Level of hard reserve r or soft floor s
Second Price r = 0
First Price Zero r = 0
Soft Floor Zero s ∈ {33.33, 50, 66.67, 100}
First Price r ∈ {33.33, 50, 66.67, 100}

Across all auctions, a sizable majority of sellers prefer the soft floor, 66.81 percent, over the
hard reserve, 33.19 percent (p < 0.001). The same holds if we restrict ourselves to intermediate
reserve price levels (s, r = {33.33; 50; 66.67}), where 60.83 percent of our sellers prefer the soft
floor while 39.17 percent prefer the hard reserve (p = 0.049).

Not only do sellers prefer the soft floor, but they also choose higher soft floors than hard
reserves. The average hard reserve is 53.70 ECU, slightly above the optimal reserve for risk-
neutral bidders of 50 ECU, while the average soft floor is 71.80 ECU (p < 0.001). If we restrict
to intermediate reserve levels, the average hard reserve, 55.36 ECU, is smaller than the average
soft floor, 60.87 ECU (p = 0.08).

Figure B.6 shows the relative frequencies with which sellers choose soft floors and hard reserves
across levels. Here, we exclude the rarely chosen second-price auction. Note that they could
be implemented indirectly by choosing a soft floor and a hard reserve of s = r = 0. The figure
shows that a low hard reserve of 33.33 ECU is more popular than a correspondingly low soft
floor, yet with only 5 percent of all cases, both are hardly chosen. The absolute and relative
attractiveness of the soft floors increases in s. The soft floor is more popular for a level of 50
ECU, although the effect is not statistically significant (p = 0.736). For r = s = 66.67, the



50 REFERENCES

s, r=0 s, r=33.33 s, r=50 s, r=66.67 s, r=1000%
5%

10%
15%
20%
25%
30%
35%

***

***

***

0.7 %

15.6 %

32.4 %

18.1 %

4.4 %

11.5 %
15 %

0.6 %1.7 %

Sh
ar

e

Soft Floor Zero First Price

Figure B.6. Seller choices of First Price and Soft Floor in Endo treatment
Notes. The figure reports average revenue on the observation group level. Significance levels are based on
permutation tests with Holm-correction, and ∗, ∗, and ∗ denote significance at the 10 percent, 5 percent, and 1
percent level, respectively.

difference becomes highly significant both economically (more than twice as many sellers choose
the soft floor) and statistically (p = 0.035). Not surprisingly, the popularity difference between
corresponding soft floors and hard reserves becomes even larger for s = r = 100, because all
other auction formats obviously dominate the r = 100 auction.

Sellers’ choices reflect that soft-floor auctions generally lead to higher revenues. Figure B.7
displays the average revenue for the different soft floors and hard reserves levels in our Endo

treatment. Soft-floor auctions never perform significantly worse. However, they perform better
than first-price auctions for a high enough level of soft floors. Comparing the soft-floor and
first-price auction among the different levels, we find weakly significantly higher revenue for a soft
floor of 50 ECU (p = 0.063) and highly significantly higher revenue for 66.67 ECU (p = 0.001),
but no significant difference for 33.33 ECU (p = 0.399). Computing the average revenue across
all soft floor and hard reserve price levels, we find the soft-floor auction revenue (48.29 ECU)
beats the first-price auctions’ revenue with a hard reserve price (36.11 ECU) by a significant
margin (p < 0.001). Restricting the data to intermediate levels of soft floors and hard reserves
only, confirms our findings with an average soft-floor auction revenue of 48.26 ECU and an
average first-price auction revenue of 37.31 ECU (p < 0.001).
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Figure B.7. Revenue of First Price and Soft Floor in Endo treatment
Notes. The figure reports average revenue on the observation group level. Significance levels are based on
permutation tests with Holm-correction, and ∗, ∗, and ∗ denote significance at the 10 percent, 5 percent, and 1
percent level, respectively.
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